

The broader scope: monitoring behaviour by ND and other types of study

Niels Bos

SWOV Institute for Road Safety Research, the Netherlands

Background

We want

- more data
- better data

Why

- to monitor road safety developments and compare Member States
- to identify opportunities for safety improvements

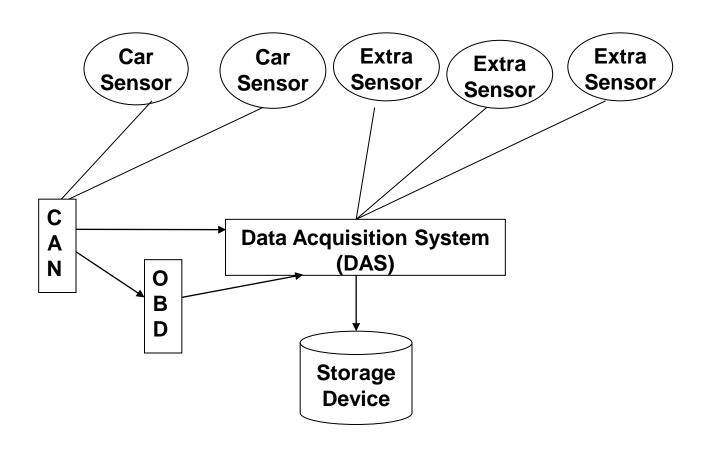
So we need

- Efficient and accurate data collection
- good comparability

Current approaches lead to incomparable data

- Number of crashes/casualties
- Safety Performance Indicators (SPIs)
- Risk Exposure Data (RED)
- → Incomplete data (e.g. crashes/casualties)
- → Different definitions (e.g. injury severity)
- → Different data collection methods (e.g. period)
- → No information at all (e.g. exposure per road type)

An alternative?


 Applying the Naturalistic Driving approach for behaviour monitoring SPIs and RED

i.e:

- Broadening current use of the ND approach:
 - Understanding normal road user behaviour and crash causation factors (e.g. SHRP2, UDRIVE)
 - Evaluating the use of in-vehicle functions in normal driving conditions (Field Operational Tests)

Typical instrumentation for ND research

ND for monitoring: some considerations

- Large sample for reliable, representative data
- Hence, start with relatively simple/cheap DAS:
 - GPS
 Speed
 Acceleration

 Smartphone-type of DAS
 - Plus some simple sensors (e.g. seat belt, light use)
 - Context data: network, vehicle, driver
- No video data (i.e. no information on fatigue, distraction)

Resulting information

- Scenario 1: Various RED and some SPI with basic DAS
 - Vehicle & person kilometres
 - Number of trips
 - Time in traffic
 - Excessive speed
 - Acceleration
- Scenario 2: more SPIs with extra sensors/data sources
 - Inappropriate speed
 - Light use
 - Seat belt use
 - Lane behaviour
 - Headway

And what about near crashes?

- Scenario 3: the SPI near crashes
 - Event triggered video (in part of sample)
 - To assess and quantify the link between vehicle parameters en near crashes
 - To understand the link between near crashes and real crashes

Added value of ND for monitoring

- Continuity of data gathering
- Scale, representative and comparable
- Simultaneous measurements
- Focus on SPIs and RED
- Information for different
 - road categories (map-matching)
 - age and gender groups
 - vehicle types

Some concerns

- Huge amounts of data to transfer, store, check and analyse
- Large samples needed: relatively high costs
 - o DAS
 - Installation, maintenance, de-installation
 - Participant recruitment and incentives
 - Sample maintenance
- Important legal and ethical/privacy issues
- Selection bias: voluntary participation

Recommendations

- Start simple:
 - Scenario 1, small sample, few Member States
- When operational, extend scope:
 Scenario 2/3, full sample size, all Member States
- Perform data storage and analysis at national level
- Transfer results to ERSO
- Install a cross-national coordinating body

Explore options for future alternative

Scenario 4:

- Involve car industry to get vehicle-based data
 - o e.g. CAN, OBD, event/trip recorder, E-call devices
 - more reliable (larger samples), less expensive
- Elaborate the requirements for this data
- Call on EU to promote/regulate
 - access to this data
 - harmonisation of this data

In Summary

- ND research suitable for cross-national monitoring of RED and SPIs
- Continuous, comparable and detailed data
- However, costly and labour intensive
- Start simple and elaborate scope gradually
- Organisation/implementation at national level
- Coordination at cross-national level
- Start now exploring the future role of car industry

Thank you for your attention

More information on

www.dacota-project.eu safetyknowsys.swov.nl

Name Niels Bos

Email <u>Niels.Bos@swov.nl</u>

Organisation SWOV, NL

Tel. + 31 70 3173 313

Partners

SWOV	Niels Bos, Ingrid van Schagen, Nicole van Nes, Jacques Commandeur, Michiel Christoff, Agnieszka Stelling, Rob Wegman, Mike Lenné
BIVV	Uta Meesmann, Sofie Boets
IFSTTAR	Corinne Brusque, Arnaud Bonnard, Myriam Hugot
KfV	Monika Pilgerstorfer, Kerstin Runda, Jürgen Pripf, Christian Brandstätter
Technion	Shalom Hakkert, Anat Rave, Tomer Toledo, Robert Ishaq
TSRC	Ruth Welsh, Rachel Talbot, Andrew Morris
Subcontractors	TTI - Michael Gatscha
	Or Yarok - Tsippi Lotan