Basing fatality forecasts on the joint development of mobility and road safety

Jacques J.F. Commandeur (SWOV, VU Amsterdam), Sylvain Lassarre (IFSTTAR)

November 22, 2012

Overview

- Univariate structural time series models
- Bivariate models
 - SUTSE model
 - ▶ LRT, the Latent Risk model
- Dependencies between fatalities and exposure
- Model choices
 - LLT, the Local Linear Trend model
 - LRT, the Latent Risk models

What is a time series?

- A time series is the result of the repeated measurement of one and the same phenomenon.
- Example: Road traffic fatalities in Norway 1970-2009:

Objectives of time series models

The objectives of time series models are to:

- obtain an adequate *description* of a time series by establishing the *trend* in the series
- find explanations for the observed developments
- obtain *forecasts* of developments of a series into the (unknown) future
- Proper forecasts can only be obtained if the trend in a time series has been appropriately captured.

What's so special about time series?

- Unlike cross-sectional data, successive observations in a time series are usually *not independent*
- For example: chances are quite small that the number of fatalities next year will be completely different from the number of fatalities this year
- ▶ We have two types of univariate structural time series model:
 - deterministic linear trend models
 - stochastic linear trend models

The deterministic linear trend model

The deterministic linear trend model for obtaining a description of the trend in a time series y_t of annual data is

$$log(y_t) = a + bt + e_t, \qquad e_t \sim \text{NID}(\sigma_e^2)$$

where t = 1, ..., n and n is the number of time points in the series, and the predictor variable t = 1, 2, ..., n is *time itself*.

- Proper statistical conclusions from a trend model can only be derived if the errors or residuals e_t are normally and *independently* distributed.
- Note: both the intercept a and the slope b are treated deterministically, that is, are not allowed to change over time.

Results deterministic linear trend model

The stochastic linear trend model

Subjecting both the intercept a and the slope b to a random walk yields the stochastic (local) linear trend model:

$$\begin{aligned} \log(y_t) = & a_t + e_t, \qquad e_t \sim \text{NID}\left(\sigma_e^2\right) \\ & a_{t+1} = & a_t + b_t + \xi_t, \qquad \xi_t \sim \text{NID}\left(\sigma_\xi^2\right) \\ & b_{t+1} = & b_t + \zeta_t, \qquad \zeta_t \sim \text{NID}\left(\sigma_\zeta^2\right) \end{aligned}$$

Note: both the intercept or level component and the slope component are now treated stochastically, that is, they are allowed to change over time.

The stochastic linear trend model

- Special cases are:
 - The level a is allowed to change over time, but not the slope b: the local level model with drift;
 - The slope b is allowed to change over time, but not the level a: the smooth trend model.

Results of the local level model with drift

So which model is best for a given time series?

- This is decided by inspection of
 - the values of the variances,
 - the diagnostic tests for independence and normality of the residuals,
 - the fit of the model (using the Akaike Information Criterion).
- For series of fatalities we find different types of model to be adequate, depending upon the series at hand.
- For series of exposure data we often find the smooth trend model to be the most appropriate.

Types of forecast

- From deterministic linear trend models, forecasts just continue the straight line based on *all years* in the series, with a confidence interval that is usually much too tight, giving a false sense of certainty.
- From stochastic linear trend models, forecasts continue the level and slope mainly based on the years at the end of the series, with a confidence interval that becomes wider and wider as time proceeds, as is to be expected on intuitive grounds.

Interventions

To all these models, interventions can be added to evaluate the effects of road safety measures:

$$log(y_t) = a_t + \lambda w_t + e_t, \qquad e_t \sim \text{NID}(\sigma_e^2)$$

where w_t is a dummy variable containing zeroes before, and ones at and after the road safety measure was introduced; λ is an unknown regression coefficient.

Example: Fatalities in France 1975-2010

Illustration of an intervention in France, deterministic trend

► The effect of the intervention is estimated to be -0.359 (a 30% drop) with a *t*-value of -11.65.

Illustration of an intervention in France: local linear trend

► The effect of the intervention is now estimated to be -0.216 (a 19% drop) with a *t*-value of -4.84.