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Overview

I Univariate structural time series models
I Bivariate models

I SUTSE model
I LRT, the Latent Risk model

I Dependencies between fatalities and exposure
I Model choices

I LLT, the Local Linear Trend model
I LRT, the Latent Risk models



What is a time series?
I A time series is the result of the repeated measurement of one

and the same phenomenon.

I Example: Road traffic fatalities in Norway 1970-2009:
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Objectives of time series models

I The objectives of time series models are to:
I obtain an adequate description of a time series by establishing

the trend in the series
I find explanations for the observed developments
I obtain forecasts of developments of a series into the

(unknown) future

I Proper forecasts can only be obtained if the trend in a time
series has been appropriately captured.



What’s so special about time series?

I Unlike cross-sectional data, successive observations in a time
series are usually not independent

I For example: chances are quite small that the number of
fatalities next year will be completely different from the
number of fatalities this year

I We have two types of univariate structural time series model:
I deterministic linear trend models
I stochastic linear trend models



The deterministic linear trend model

I The deterministic linear trend model for obtaining a
description of the trend in a time series yt of annual data is

log(yt) = a + bt + et , et ∼ NID (σ2e )

where t = 1, . . . , n and n is the number of time points in the
series, and the predictor variable t = 1, 2, . . . , n is time itself.

I Proper statistical conclusions from a trend model can only be
derived if the errors or residuals et are normally and
independently distributed.

I Note: both the intercept a and the slope b are treated
deterministically, that is, are not allowed to change over time.



Results deterministic linear trend model
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The stochastic linear trend model

I Subjecting both the intercept a and the slope b to a random
walk yields the stochastic (local) linear trend model:

log(yt) =at + et , et ∼ NID (σ2e )

at+1 =at + bt + ξt , ξt ∼ NID (σ2ξ )

bt+1 =bt + ζt , ζt ∼ NID (σ2ζ )

I Note: both the intercept or level component and the slope
component are now treated stochastically, that is, they are
allowed to change over time.



The stochastic linear trend model

I Special cases are:
I The level a is allowed to change over time, but not the slope

b: the local level model with drift;
I The slope b is allowed to change over time, but not the level

a: the smooth trend model.



Results of the local level model with drift
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So which model is best for a given time series?

I This is decided by inspection of
I the values of the variances,
I the diagnostic tests for independence and normality of the

residuals,
I the fit of the model (using the Akaike Information Criterion).

I For series of fatalities we find different types of model to be
adequate, depending upon the series at hand.

I For series of exposure data we often find the smooth trend
model to be the most appropriate.



Types of forecast

I From deterministic linear trend models, forecasts just continue
the straight line based on all years in the series, with a
confidence interval that is usually much too tight, giving a
false sense of certainty.

I From stochastic linear trend models, forecasts continue the
level and slope mainly based on the years at the end of the
series, with a confidence interval that becomes wider and
wider as time proceeds, as is to be expected on intuitive
grounds.



Interventions

I To all these models, interventions can be added to evaluate
the effects of road safety measures:

log(yt) =at + λwt + et , et ∼ NID (σ2e )

where wt is a dummy variable containing zeroes before, and
ones at and after the road safety measure was introduced; λ is
an unknown regression coefficient.



Example: Fatalities in France 1975-2010
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Illustration of an intervention in France, deterministic trend
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I The effect of the intervention is estimated to be −0.359 (a
30% drop) with a t-value of −11.65.



Illustration of an intervention in France: local linear trend
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I The effect of the intervention is now estimated to be −0.216
(a 19% drop) with a t-value of −4.84.


